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Abstract − The proposed low-power technique, which is 
based on based on Standby sparing technique, is used in 
fault tolerant multiprocessor systems. To validate technique, 
we have developed the multiprocessor system, consisting of 
two microcontroller cores. The system, maintains both the 
fault tolerance and low-power operation. 

1. INTRODUCTION 

In modern System-on-Chip (SoC) design, the technology 
scaling has allowed more functionality per area, higher clock 
speeds, and lower switching energy, but has also increased 
the amount of leakage power. The dynamic voltage and 
frequency scaling (DVFS) and power gating became popular 
power management techniques and they are applied in many 
electronic circuits and systems [1]. 

The dynamic voltage and frequency scaling is the most 
utilized method for reducing dynamic component of power 
consumption. The DVFS reduces supply voltage and its use 
leads to a quadratic reduction in dynamic energy. However, 
in new technologies, the utilization of DVFS is limited by the 
significant increase of leakage power. Recent advances in 
circuit design have allowed researchers to operate chips with 
supply voltages far below the range normally used by 
integrated circuits [2]. 

Leakage power management is one of the main 
challenges in modern integrated circuit design. For example, 
the microprocessor manufacturers have adopted power-
gating and programmable sleep operating modes to 
accommodate the growing popularity of low-power sensor, 
mobile and wireless applications. With these techniques, 
special transistors are used as gates that cut off the power 
from unused sub-blocks of a microprocessor, which 
substantially reduces the leakage power [3].  

The hard real-time systems have to operate correctly even 
in the presence of faults. The faults can be classified into two 
categories - permanent and transient. Permanent faults may 
bring a system to stop and cannot be recovered without some 
form of hardware redundancy, while transient faults are often 
triggered by temporary causes and will disappear after some 
short time interval [4]. With reduced technology size, and 
operation at very low supply voltages, it is proven that 
modern computing devices are more susceptible to faults, and 
therefore, it is imperative to incorporate fault tolerant 
methods [5]. 

 
2. THE HARDWARE REDUNDANCY METHOD  

The standby sparing technique [6] is used in hard real-
time applications. The multi-microprocessor system that 
utilizes standby sparing method consists of two identical 
microprocessor cores. It is a hardware redundancy system, 
where redundancy lies in the utilization of one additional 
core. Since the power consumption is an important aspect of 
IC design, the system utilizes low power techniques such as 

DVFS and power gating. Besides, microcontroller cores 
incorporate active and standby operating modes. 

The microprocessor core (called primary core) operates at 
the frequency maximum fmax, obtained at voltage level Vmax. 
The primary core power consumption is reduced by 
decreasing the supply voltage. The microprocessor's voltage 
supply value is adjusted with scaling factor ρ which belongs 
to the range [ρmin,1]. 

 maxV
V=ρ  (1) 

As DVFS method adjusts the supply voltage, the clock 
frequency fclk is also adjusted because of the constraint: 
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, where VT is the threshold voltage, which is dependent 
on technology in which the circuit is implemented. 
Frequency tunings may spoil the performance of real-time 
systems, especially when there are hard deadlines to meet [6]. 
Because it can be assumed that operating frequency is 
approximately proportional to the supply voltage value, ρ 
will also be used to represent the microcontroller's speed. The 
scaling factor ρ is equal to the ratio of actual operating speed 
fclk to the full speed fmax. 

The spare processor core is used because the system has 
to be recovered from permanent faults. The spare core is 
identical to the primary core, executes the same sequence of 
tasks, but resides in standby operating mode most of the time. 
Besides, the spare core operates at maximum levels of 
operating frequency and supply voltage - fmax and Vmax, 
because high supply voltage level enables the fault tolerant 
operation. 

 
Fig.1. The primary and spare cores execute tasks 

The operation of the system is explained on the example 
of group of tasks. Each task Ti is executed within actual 
execution time interval (AET), which is less or equal than 
worst case execution time interval (WCET). All the tasks 
should be completed before the specified deadline time D. 
For every task running on primary core that has been selected 
to be scaled down by DVFS, the separate recovery job is 
scheduled. The spare core executes the recovery task when 
primary core’s task incurs faults. However, to meet the 
deadline time, the spare core is often turned on before the 
primary core finishes its operation and possible faults are 
checked. If primary core completes the task without any 
error, spare core cancels further operation, and returns to 
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standby mode. If primary core fails executing the task, the 
backup task is completed by spare core. 

The Fig.1 shows the execution of successive tasks Ti and 
Ti+1. The primary core, which operates at speed ρ, finishes 
the task within the time interval AETi/ρ. The spare unit, 
working at fmax, starts the execution after delay di and finishes 
after the time interval AETi. During the delay time the spare 
unit is in standby mode. At the moment when primary core 
finishes the task Ti, the operation of this task is checked. The 
error detection is usually assumed to be part of the software 
and error detection overhead is considered as a part of the 
execution time [7]. If error is not found, the execution of 
spare task is cancelled. If primary core fails, the next task Ti+1 
can be started after the spare unit completes the backup task 
Ti.  

To reduce the total power dissipation, the time interval 
during which the spare stays in Active mode should be 
minimized. Therefore, the delay time di should be increased. 
but it is limited by the deadline time D.  

The inter-task time ri defined as the delay between two 
consecutive tasks Ti and Ti+1 can be determined by Eq.3: 

 ( )11 −−= ρ/iii AETdr  (3) 
The energy consumption of spare depends on the duration 

of spare active time interval ai, given by Eq.4: 

 
i
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ρ  (4) 
The equation can be modified as follows: 

 iii AETra =+  (5) 
The maximum value of sum of all inter-task times ri is 

given by the slack time SLT, and it is equal to the difference 
of deadline time D and the sum of all actual execution times 
(Eq.6). 
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The active time A of spare unit contributes the most of total 
power consumption. The active time A is: 

 
∑∑∑
===

−==
N

i
i

N

i
i

N

i
i rAETaA

111  (7) 
The spare active time minimum is: 
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3. THE MODIFICATION OF HARDWARE 
REDUNDANCY METHOD  

The power consumption of spare unit can be larger than 
the consumption of primary unit. The modification of 
standby sparing method, which is based on concatenation of 
successive tasks, reduces the total power consumption. 

Consider the execution of two consecutive tasks Ti and 
Ti+1. The primary core operates at speed ρ and completes the 
task Ti and Ti+1 for time interval AETi/ρ and AETi+1/ρ. 
Immediately after a primary core finishes the Ti, it starts the 

execution of the next task Ti+1. The delay period between Ti 
and Ti+1 is lost. The spare starts with execution after delay di. 
If the task Ti is completed without error, the recovery task Ti 
is stopped. The task Ti+1 is started on the primary unit. At the 
moment when primary core finishes the Ti+1, the operation of 
Ti+1 is checked. If task Ti+1 is finished without errors, the 
recovery task Ti+1 is cancelled. 

The execution of recovery tasks Ti and Ti+1 is completed 
if faults occur on the primary core. The execution of Ti+1 on 
primary core is cancelled. In this situation, the total energy 
consumption is increased because spare unit completes both 
tasks Ti and Ti+1. The fault tolerance of tasks Ti is preserved, 
but for Ti+1 it is slightly degraded because this task is 
executed only by spare core. The probability of an error to 
occur is small because of high supply voltage level of spare 
core. 

 
Fig.2. The concatenation of tasks, case 1: AETi > AETi+1/ρ 

First, the relation given by Eq.9 is considered. The 
relation is illustrated in Fig.2. 
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In the case when spare core executes only the part of task 
Ti, the sum of inter-task times and spare active intervals of 
tasks Ti and Ti+1 is equal to: 
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When the spare unit executes the parts of tasks, the sum 
of inter-task times and spare active times of tasks Ti and 
Ti+1 is: 
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Fig.3. The case 2: AETi+1<AETi< AETi+1/ρ 
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Then, the relation given by Eq.12 is considered. The 
situation is shown in Fig.3. 
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If spare unit executes only task Ti+1, the sum of inter-task 

times and spare active times of tasks Ti and Ti+1, is equal to: 
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When the spare unit executes the parts of both tasks, the 
sum is given by Eq.14: 
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The third situation, given in Fig.4, is expressed by 

condition Eq.15. The sum of inter-task times and spare active 
times of tasks Ti and Ti+1, is provided by Eq.16. 

 

  1+< ii AETAET  (15) 
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The power consumption of spare microprocessor core is 

reduced if spare active time interval ai is minimized. The 
concatenation of tasks decreases the total sum of inter-task 
times and spare active times. 

In the first case, which is shown in Fig.2, the sum of 
inter-task times and spare active times of tasks is reduced by 
value AETi+1/ρ. It other two cases, given in Fig.3 and Fig.4, 
the reduction is equal to the value of AETi.  

The described operation is repeated until the sum of all 
inter-task times and spare active times becomes equal or less 
than slack time SLT. Further reduction of the sum would not 
yield the energy efficiency. 

 

 
Fig.4. The concatenation of tasks, case 3: AETi< AETi+1 

 
4. THE IMPLEMENTATION OF THE SYSTEM 

The low power, fault tolerant system is created. The 8052 
microcontroller [8] was used which global architecture of 

consists of core, memory blocks, and peripheral units. The 
peripherals are comprised of three timer/counter circuits, 
three digital input/output parallel ports, one asynchronous 
universal receiver/transmitter and one I2C serial 
communication block. Three main memory blocks are 
present: program memory (on-chip 8kB SRAM), external 
data memory XRAM (physically consisting of on-chip 2kB 
SRAM), and internal data memory IRAM (comprising of 256 
Internal Dual-Port RAM and Special Function Register set). 

The microcontroller was implemented using Synopsys 
90nm digital standard cell library and Synopsys tool suite [9]. 
The microcontroller’s layout was partitioned into three power 
domains. The MCU core, the peripherals and memories were 
put into distinct domains which enable shutting down of 
inactive blocks. The header MTCMOS [2] transistors were 
utilized for implementation of power domains. During 
standby operating mode the core is switched off from the 
power supply, and the peripheral units and memories are kept 
powered. 

 

 
Fig.5. A schedule of tasks, when standby sparing is applied 

The fault tolerant system was created consisting of two 
identical 8052 cores, called the primary and spare cores. The 
primary and spare cores were implemented in different power 
domains. Since the spare core executes the same program 
code as primary unit, it shares with primary core RAM 
memory blocks. The RAM memories represent the largest 
blocks. The RAM area is three times larger than the area of 
single core [8]. Therefore, the additional microcontroller core 
does not increase significantly the total chip occupied area. 

The spare core operates at nominal supply voltage 
Vmax=1.2V and executes the instructions at the maximum 
clock frequency fmax=120MHz. The supply voltage of 
primary core can be reduced by DVFS from Vmax downto 
Vreduced=0.84V.  

The system is evaluated on a schedule of tasks which 
energy consumption values were estimated. The schedule 
consists of four tasks T1, T2, T3 and T4 with actual 
execution intervals equal to 10ms, 4ms, 6ms and 8ms 
respectively (Fig. 5). Standby sparing method was applied. 
Three power analyses were conducted with different values 
of parameter ρ. The normalized speed of primary core was 
changed in the range from 0.9 to 0.7. The corresponding 
voltage supply levels of primary core are 1.08V, 0.96V and 
0.84V. 
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Fig.6. A schedule of tasks after the concatenation of tasks is 

performed 

The power consumption was obtained after the layout 
was implemented and layout netlist was verified. To estimate 
the dynamic power, the switching activity of the nets was 
recorded during logical verification. The results are given in 
the Table 1. The total energy consumption values are 
313.25μJ, 306.02μJ and 315.04μJ. After, the described 
method was applied. The task T1 is joined with T2, while T3 
is concatenated with T4. The parameter ρ of primary core 
was changed in the range from 0.9 to 0.7. The Fig. 6 gives 
the schedules where tasks are concatenated. The energy 
consumption of modified microcontroller system was 
estimated. The obtained values are: 223.9μJ, 198.1μJ and 
200.1μJ; in other words, approximately 33% energy 
reduction is obtained compared to the non-optimized 
implementation. 

Table 1. The power optimization results  
Normalize
d 
speed ρ 

Primar. 
core 
voltage 
[V] 

Energy of 
primary 
core [μJ] 

Energy of 
spare core 

[μJ] 

Total 
energy 
[μJ] 

Before optimization 
0.9 1.08V 223.905 89.351 313.256 
0.8 0.96V 178.535 127.491 306.026 
0.7 0.84V 138.52 176.526 315.046 
After optimization 
0.9 1.08V 223.905 0 223.905 
0.8 0.96V 178.535 19.614 198.149 
0.7 0.84V 138.52 61.646 200.166 

 
5. CONCLUSION 

In this paper, the modification of standby sparing 
technique is proposed, in which the tradeoff between the 
fault tolerance and energy consumption is made. The 
technique relies on hardware redundancy and utilizes low 
power techniques: dynamic voltage scaling and power gating.  

To validate the technique, the hard real time system was 
created, which incorporates two identical microcontroller 
cores. The first microprocessor core is called the primary unit 

and operates at lower voltage, reducing the power 
consumption. The other microcontroller core, called spare 
unit, exploits power gating to conserve the power and 
ensures the fault tolerant operation. The spare unit operates at 
higher voltage, but is most of the time inactive, reducing the 
total energy consumption. 
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Sadržaj − Predložena tehnika zasnovana je na Standby 
sparing metodi. Koristi se u real-time sistemima za uštedu 
snage dispacije mikroprocesora koji rade na malim naponima 
napajanja. Za proveru tehnike razvijen je multiprocesorski 
sistem koji se sastoji od dva identična jezgra 
mikrokontrolera. Sistem obezbeđuje toleranciju na greške i 
malu potrošnju. 

DVOPROCESORSKI SISTEM MALE POTROŠNJE 
TOLERANTAN NA GREŠKE  

Borisav Jovanović, Milunka Damnjanović

 
 
 
 
 
 


