
Naučno-stručni simpozijum Energetska efikasnost | ENEF 2013, Banja Luka, 22. – 23. novembar 2013. godine

B3-9

LOW POWER DUAL PROCESSOR FAULT-TOLERANT SYSTEM
Borisav Jovanović, Milunka Damnjanović, University of Niš, Faculty of Electronic Engineering

Abstract − The proposed low-power technique, which is
based on based on Standby sparing technique, is used in
fault tolerant multiprocessor systems. To validate technique,
we have developed the multiprocessor system, consisting of
two microcontroller cores. The system, maintains both the
fault tolerance and low-power operation.

1. INTRODUCTION

In modern System-on-Chip (SoC) design, the technology
scaling has allowed more functionality per area, higher clock
speeds, and lower switching energy, but has also increased
the amount of leakage power. The dynamic voltage and
frequency scaling (DVFS) and power gating became popular
power management techniques and they are applied in many
electronic circuits and systems [1].

The dynamic voltage and frequency scaling is the most
utilized method for reducing dynamic component of power
consumption. The DVFS reduces supply voltage and its use
leads to a quadratic reduction in dynamic energy. However,
in new technologies, the utilization of DVFS is limited by the
significant increase of leakage power. Recent advances in
circuit design have allowed researchers to operate chips with
supply voltages far below the range normally used by
integrated circuits [2].

Leakage power management is one of the main
challenges in modern integrated circuit design. For example,
the microprocessor manufacturers have adopted power-
gating and programmable sleep operating modes to
accommodate the growing popularity of low-power sensor,
mobile and wireless applications. With these techniques,
special transistors are used as gates that cut off the power
from unused sub-blocks of a microprocessor, which
substantially reduces the leakage power [3].

The hard real-time systems have to operate correctly even
in the presence of faults. The faults can be classified into two
categories - permanent and transient. Permanent faults may
bring a system to stop and cannot be recovered without some
form of hardware redundancy, while transient faults are often
triggered by temporary causes and will disappear after some
short time interval [4]. With reduced technology size, and
operation at very low supply voltages, it is proven that
modern computing devices are more susceptible to faults, and
therefore, it is imperative to incorporate fault tolerant
methods [5].

2. THE HARDWARE REDUNDANCY METHOD

The standby sparing technique [6] is used in hard real-
time applications. The multi-microprocessor system that
utilizes standby sparing method consists of two identical
microprocessor cores. It is a hardware redundancy system,
where redundancy lies in the utilization of one additional
core. Since the power consumption is an important aspect of
IC design, the system utilizes low power techniques such as

DVFS and power gating. Besides, microcontroller cores
incorporate active and standby operating modes.

The microprocessor core (called primary core) operates at
the frequency maximum fmax, obtained at voltage level Vmax.
The primary core power consumption is reduced by
decreasing the supply voltage. The microprocessor's voltage
supply value is adjusted with scaling factor ρ which belongs
to the range [ρmin,1].

 maxV
V=ρ (1)

As DVFS method adjusts the supply voltage, the clock
frequency fclk is also adjusted because of the constraint:

V
VVf T

clk

2)(−∝ (2)

, where VT is the threshold voltage, which is dependent
on technology in which the circuit is implemented.
Frequency tunings may spoil the performance of real-time
systems, especially when there are hard deadlines to meet [6].
Because it can be assumed that operating frequency is
approximately proportional to the supply voltage value, ρ
will also be used to represent the microcontroller's speed. The
scaling factor ρ is equal to the ratio of actual operating speed
fclk to the full speed fmax.

The spare processor core is used because the system has
to be recovered from permanent faults. The spare core is
identical to the primary core, executes the same sequence of
tasks, but resides in standby operating mode most of the time.
Besides, the spare core operates at maximum levels of
operating frequency and supply voltage - fmax and Vmax,
because high supply voltage level enables the fault tolerant
operation.

Fig.1. The primary and spare cores execute tasks

The operation of the system is explained on the example
of group of tasks. Each task Ti is executed within actual
execution time interval (AET), which is less or equal than
worst case execution time interval (WCET). All the tasks
should be completed before the specified deadline time D.
For every task running on primary core that has been selected
to be scaled down by DVFS, the separate recovery job is
scheduled. The spare core executes the recovery task when
primary core’s task incurs faults. However, to meet the
deadline time, the spare core is often turned on before the
primary core finishes its operation and possible faults are
checked. If primary core completes the task without any
error, spare core cancels further operation, and returns to

B3-10

standby mode. If primary core fails executing the task, the
backup task is completed by spare core.

The Fig.1 shows the execution of successive tasks Ti and
Ti+1. The primary core, which operates at speed ρ, finishes
the task within the time interval AETi/ρ. The spare unit,
working at fmax, starts the execution after delay di and finishes
after the time interval AETi. During the delay time the spare
unit is in standby mode. At the moment when primary core
finishes the task Ti, the operation of this task is checked. The
error detection is usually assumed to be part of the software
and error detection overhead is considered as a part of the
execution time [7]. If error is not found, the execution of
spare task is cancelled. If primary core fails, the next task Ti+1
can be started after the spare unit completes the backup task
Ti.

To reduce the total power dissipation, the time interval
during which the spare stays in Active mode should be
minimized. Therefore, the delay time di should be increased.
but it is limited by the deadline time D.

The inter-task time ri defined as the delay between two
consecutive tasks Ti and Ti+1 can be determined by Eq.3:

 ()11 −−= ρ/iii AETdr (3)
The energy consumption of spare depends on the duration

of spare active time interval ai, given by Eq.4:

i

i
iii dAETrAETa −=−=

ρ (4)
The equation can be modified as follows:

 iii AETra =+ (5)
The maximum value of sum of all inter-task times ri is

given by the slack time SLT, and it is equal to the difference
of deadline time D and the sum of all actual execution times
(Eq.6).

 ∑∑
==

−==
N

i
i

N

i
i AETDrSLT

11

1
ρmax)((6)

The active time A of spare unit contributes the most of total
power consumption. The active time A is:

∑∑∑
===

−==
N

i
i

N

i
i

N

i
i rAETaA

111 (7)
The spare active time minimum is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+>−=

∑

∑∑

=

==

ρ

ρ

110

11

1

11

/ ,)(

/ ,)(

min

min

DAETA

DAETDAETA

N

i
i

N

i
i

N

i
i

 (8)

3. THE MODIFICATION OF HARDWARE
REDUNDANCY METHOD

The power consumption of spare unit can be larger than
the consumption of primary unit. The modification of
standby sparing method, which is based on concatenation of
successive tasks, reduces the total power consumption.

Consider the execution of two consecutive tasks Ti and
Ti+1. The primary core operates at speed ρ and completes the
task Ti and Ti+1 for time interval AETi/ρ and AETi+1/ρ.
Immediately after a primary core finishes the Ti, it starts the

execution of the next task Ti+1. The delay period between Ti
and Ti+1 is lost. The spare starts with execution after delay di.
If the task Ti is completed without error, the recovery task Ti
is stopped. The task Ti+1 is started on the primary unit. At the
moment when primary core finishes the Ti+1, the operation of
Ti+1 is checked. If task Ti+1 is finished without errors, the
recovery task Ti+1 is cancelled.

The execution of recovery tasks Ti and Ti+1 is completed
if faults occur on the primary core. The execution of Ti+1 on
primary core is cancelled. In this situation, the total energy
consumption is increased because spare unit completes both
tasks Ti and Ti+1. The fault tolerance of tasks Ti is preserved,
but for Ti+1 it is slightly degraded because this task is
executed only by spare core. The probability of an error to
occur is small because of high supply voltage level of spare
core.

Fig.2. The concatenation of tasks, case 1: AETi > AETi+1/ρ

First, the relation given by Eq.9 is considered. The
relation is illustrated in Fig.2.

 1

ρ
+> i

i
AETAET (9)

In the case when spare core executes only the part of task
Ti, the sum of inter-task times and spare active intervals of
tasks Ti and Ti+1 is equal to:

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=+

+++

+
+=

∑

ρ

ρ

11

11

111

1
1

iiii

ii
iij

jj

AETAETAETr

AETAETar

,

)(
 ,

 (10)

When the spare unit executes the parts of tasks, the sum
of inter-task times and spare active times of tasks Ti and
Ti+1 is:

 []11

11
1

0

12

++

++
+=

∈

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=+∑

ii

iii
iij

jj

AETr

rAETAETar

,

 ,)(
 , ρ

 (11)

Fig.3. The case 2: AETi+1<AETi< AETi+1/ρ

B3-11

Then, the relation given by Eq.12 is considered. The
situation is shown in Fig.3.

 ρ
 1

1
+

+ << i
ii

AET
AETAET

 (12)
If spare unit executes only task Ti+1, the sum of inter-task

times and spare active times of tasks Ti and Ti+1, is equal to:

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∈

=+

+++

+
+=

∑

111

1
1

11 iiii

i
iij

jj

AETAETAETr

AETar

,

)(,
 ,

ρ
 (13)

When the spare unit executes the parts of both tasks, the
sum is given by Eq.14:

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∈

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=+

++

++
+=

∑

ρ

ρ

110

12

11

11
1

iii

iii
iij

jj

AETAETr

rAETAETar

,

 ,)(
 ,

 (14)
The third situation, given in Fig.4, is expressed by

condition Eq.15. The sum of inter-task times and spare active
times of tasks Ti and Ti+1, is provided by Eq.16.

 1+< ii AETAET (15)

 []11

1
1

0 ++

+
+=

∈

=+∑

ii

i
iij

jj

AETr

AETar

,

 ,)(
 ,

 (16)
The power consumption of spare microprocessor core is

reduced if spare active time interval ai is minimized. The
concatenation of tasks decreases the total sum of inter-task
times and spare active times.

In the first case, which is shown in Fig.2, the sum of
inter-task times and spare active times of tasks is reduced by
value AETi+1/ρ. It other two cases, given in Fig.3 and Fig.4,
the reduction is equal to the value of AETi.

The described operation is repeated until the sum of all
inter-task times and spare active times becomes equal or less
than slack time SLT. Further reduction of the sum would not
yield the energy efficiency.

Fig.4. The concatenation of tasks, case 3: AETi< AETi+1

4. THE IMPLEMENTATION OF THE SYSTEM

The low power, fault tolerant system is created. The 8052
microcontroller [8] was used which global architecture of

consists of core, memory blocks, and peripheral units. The
peripherals are comprised of three timer/counter circuits,
three digital input/output parallel ports, one asynchronous
universal receiver/transmitter and one I2C serial
communication block. Three main memory blocks are
present: program memory (on-chip 8kB SRAM), external
data memory XRAM (physically consisting of on-chip 2kB
SRAM), and internal data memory IRAM (comprising of 256
Internal Dual-Port RAM and Special Function Register set).

The microcontroller was implemented using Synopsys
90nm digital standard cell library and Synopsys tool suite [9].
The microcontroller’s layout was partitioned into three power
domains. The MCU core, the peripherals and memories were
put into distinct domains which enable shutting down of
inactive blocks. The header MTCMOS [2] transistors were
utilized for implementation of power domains. During
standby operating mode the core is switched off from the
power supply, and the peripheral units and memories are kept
powered.

Fig.5. A schedule of tasks, when standby sparing is applied

The fault tolerant system was created consisting of two
identical 8052 cores, called the primary and spare cores. The
primary and spare cores were implemented in different power
domains. Since the spare core executes the same program
code as primary unit, it shares with primary core RAM
memory blocks. The RAM memories represent the largest
blocks. The RAM area is three times larger than the area of
single core [8]. Therefore, the additional microcontroller core
does not increase significantly the total chip occupied area.

The spare core operates at nominal supply voltage
Vmax=1.2V and executes the instructions at the maximum
clock frequency fmax=120MHz. The supply voltage of
primary core can be reduced by DVFS from Vmax downto
Vreduced=0.84V.

The system is evaluated on a schedule of tasks which
energy consumption values were estimated. The schedule
consists of four tasks T1, T2, T3 and T4 with actual
execution intervals equal to 10ms, 4ms, 6ms and 8ms
respectively (Fig. 5). Standby sparing method was applied.
Three power analyses were conducted with different values
of parameter ρ. The normalized speed of primary core was
changed in the range from 0.9 to 0.7. The corresponding
voltage supply levels of primary core are 1.08V, 0.96V and
0.84V.

B3-12

Fig.6. A schedule of tasks after the concatenation of tasks is

performed

The power consumption was obtained after the layout
was implemented and layout netlist was verified. To estimate
the dynamic power, the switching activity of the nets was
recorded during logical verification. The results are given in
the Table 1. The total energy consumption values are
313.25μJ, 306.02μJ and 315.04μJ. After, the described
method was applied. The task T1 is joined with T2, while T3
is concatenated with T4. The parameter ρ of primary core
was changed in the range from 0.9 to 0.7. The Fig. 6 gives
the schedules where tasks are concatenated. The energy
consumption of modified microcontroller system was
estimated. The obtained values are: 223.9μJ, 198.1μJ and
200.1μJ; in other words, approximately 33% energy
reduction is obtained compared to the non-optimized
implementation.

Table 1. The power optimization results
Normalize
d
speed ρ

Primar.
core
voltage
[V]

Energy of
primary
core [μJ]

Energy of
spare core

[μJ]

Total
energy
[μJ]

Before optimization
0.9 1.08V 223.905 89.351 313.256
0.8 0.96V 178.535 127.491 306.026
0.7 0.84V 138.52 176.526 315.046
After optimization
0.9 1.08V 223.905 0 223.905
0.8 0.96V 178.535 19.614 198.149
0.7 0.84V 138.52 61.646 200.166

5. CONCLUSION

In this paper, the modification of standby sparing
technique is proposed, in which the tradeoff between the
fault tolerance and energy consumption is made. The
technique relies on hardware redundancy and utilizes low
power techniques: dynamic voltage scaling and power gating.

To validate the technique, the hard real time system was
created, which incorporates two identical microcontroller
cores. The first microprocessor core is called the primary unit

and operates at lower voltage, reducing the power
consumption. The other microcontroller core, called spare
unit, exploits power gating to conserve the power and
ensures the fault tolerant operation. The spare unit operates at
higher voltage, but is most of the time inactive, reducing the
total energy consumption.

6. REFERENCES

[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons, K. Shi,
Low Power Methodology Manual, Springer, 2007.

[2] P. Bipul, A. Agarwal, K. Roy “Low-Power Design
Techniques for Scaled Technologies,” Integration, The
VLSI Journal, Vol. 39, Issue 2 (2006), pp. 64–89

[3] H. Kopetz, Real-time systems: Design principles for
distributed applications, Kluwer Academic Publishers,
2002

[4] S. Poledna, Fault tolerant real-time systems: The
problem of replica determinism, Kluwer Academic
Publishers, 1996

[5] D.K. Pradhan, Fault tolerant computer system design,
Prentice Hall, 1996

[6] A. Ejlali, B. M. Al-Hashimi M. T. Schmitz P.
Rosinger, S. G. Miremadi, “Combined Time and
Information Redundancy for SEU -Tolerance in Energy
Efficient Real-Time Systems,” IEEE Trans. VLSI
Systems, Vol.14 no.4 pp.323-335, April 2006.

[7] P. Eles, V. Izosimov, P. Pop, Z. Peng “Synthesis of
Fault Tolerant Real-Time Systems” in Proc. Design,
Automation and Test in Europe, 2008

[8] B. Jovanović, M. Zwolinski, M. Damnjanović, “Low
power digital design in Integrated Power Meter IC,” in
Proc. of the Small Systems Simulation Symposium 2010,
Niš, Serbia

[9] Synopsys 90nm Generic Library for Teaching IC
Design, http://www.synopsys.com, accessed April 2010

[10] B. Jovanović, M. Damnjanović, “Energy efficiency of
hard real-time systems based on standby sparing,”
Zbornik LVI konferencije ETRAN 2012

Sadržaj − Predložena tehnika zasnovana je na Standby
sparing metodi. Koristi se u real-time sistemima za uštedu
snage dispacije mikroprocesora koji rade na malim naponima
napajanja. Za proveru tehnike razvijen je multiprocesorski
sistem koji se sastoji od dva identična jezgra
mikrokontrolera. Sistem obezbeđuje toleranciju na greške i
malu potrošnju.

DVOPROCESORSKI SISTEM MALE POTROŠNJE
TOLERANTAN NA GREŠKE

Borisav Jovanović, Milunka Damnjanović

